首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3276篇
  免费   175篇
  国内免费   22篇
测绘学   230篇
大气科学   261篇
地球物理   882篇
地质学   1172篇
海洋学   246篇
天文学   504篇
综合类   29篇
自然地理   149篇
  2023年   16篇
  2022年   51篇
  2021年   63篇
  2020年   87篇
  2019年   71篇
  2018年   177篇
  2017年   136篇
  2016年   225篇
  2015年   180篇
  2014年   208篇
  2013年   246篇
  2012年   216篇
  2011年   231篇
  2010年   179篇
  2009年   184篇
  2008年   152篇
  2007年   114篇
  2006年   112篇
  2005年   73篇
  2004年   92篇
  2003年   65篇
  2002年   68篇
  2001年   65篇
  2000年   38篇
  1999年   27篇
  1998年   52篇
  1997年   38篇
  1996年   24篇
  1995年   33篇
  1994年   22篇
  1993年   11篇
  1992年   20篇
  1991年   11篇
  1990年   24篇
  1989年   16篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   17篇
  1984年   6篇
  1983年   12篇
  1982年   10篇
  1981年   6篇
  1980年   12篇
  1978年   9篇
  1977年   5篇
  1975年   4篇
  1972年   10篇
  1965年   3篇
  1950年   4篇
排序方式: 共有3473条查询结果,搜索用时 265 毫秒
991.
992.
Summary In the Villány Mts of southern Hungary, ocelli-bearing porphyritic lamprophyre dykes and sills of Upper Cretaceous age occur sporadically, intruding Mesozoic carbonate rocks. They at places contain metasomatised mantle xenoliths and quartz xenocrysts of crustal origin. They are moderately fractionated with significant LILE and LREE enrichments and a notable Nb–Ta negative anomaly. Trace elements indicate that they formed in an intraplate environment by very low degree partial melting of a metasomatised garnet lherzolite mantle source that was enriched by earlier subduction. Based on petrography, geochemistry and age constraints, they differ from other Mesozoic basic rocks of the Tisza block (Mecsek Mts and Slavonian basalts); however, they show a significant geochemical similarity to the Upper Cretaceous lamprophyre dyke swarm from NE Transdanubia (northwestern Hungary) situated on the Alcapa microplate. Thus we suggest that lamprophyres from the Villány Mts and NE Transdanubia could have originated from the same or similar enriched asthenospheric mantle sources.  相似文献   
993.
Underway current velocity profiles were combined with temperature and salinity profiles at fixed stations to describe tidal and subtidal flow patterns in the middle of the northernmost Chilean fjord, Estuario Reloncaví. This is the first study involving current velocity measurements in this fjord. Reloncaví fjord is 55 km long, 2 km wide, and on average is 170 m deep. Measurements concentrated around a marked bend of the coastline, where an 8-km along-fjord transect was sampled during a semidiurnal tidal cycle in March 2002 and a 2-km cross-fjord transect was occupied, also during a semidiurnal cycle, in May 2004. The fjord hydrography showed a relatively thin (<5 m deep), continuously stratified, buoyant layer with stratification values >4 kg m−3 per meter of depth. Below this thin layer, the water was relatively homogeneous. Semidiurnal tidal currents had low amplitudes (<10 cm s−1) that allowed the persistence of a surface front throughout the tidal cycle. The front oscillated with a period of ca. 2.5 h and showed excursions of 2 km. The front oscillations could have been produced by a lateral seiche that corresponds to the natural period of oscillation across the fjord. This front could have also caused large (2 h) phase lags in the semidiurnal tidal currents, from one end of the transect to the other, within the buoyant layer. Tidal phases were relatively uniform underneath this buoyant layer. Subtidal flows showed a 3-layer pattern consisting of a surface layer (8 m thick, of 5 cm s−1 surface outflow), an intermediate layer (70 m thick, of 3 cm s−1 net inflow), and a bottom layer (below 80 m depth, of 3 cm s−1 net outflow). The surface outflow and, to a certain extent, the inflow layer were related to the buoyant water interacting with the ambient oceanic water. The inflowing layer and the bottom outflow were attributed to nonlinear effects associated with a tidal wave that reflects at the fjord's head. The weak subtidal currents followed the morphology of the bend and caused downwelling on the inside and upwelling on the outside part of the bend.  相似文献   
994.
The Vazante Group hosts the Vazante nonsulfide zinc deposit, which comprises high-grade zinc silicate ore (ZnSiO4), and late-diagenetic to epigenetic carbonate-hosted sulfide-rich zinc deposits (e.g. Morro Agudo, Fagundes, and Ambrósia). In the sulfide-rich deposits, hydrothermal alteration involving silicification and dolomitization was related with ground preparation of favorable zones for fluid migration (e.g. Fagundes) or with direct interaction with the metalliferous fluid (e.g. Ambrósia). At Vazante, hydrothermal alteration resulted in silicification and dolomite, siderite, jasper, hematite, and chlorite formation. These processes were accompanied by strong relative gains of SiO2, Fe2O3(T), Rb, Sb, V, U, and La, which are typically associated with the nonsulfide zinc mineralization. All sulfide-rich zinc ores in the district display a similar geochemical signature suggesting a common metal source from the underlying sedimentary sequences.Oxygen and carbon isotope compositions of hydrothermally altered rocks reveal a remarkable alteration halo at the Vazante deposit, which is not a notable feature in the sulfide-rich deposits. This pattern could be attributed to fluid mixing processes involving the metalliferous fluid and channelized meteoric water, which may control the precipitation of the Vazante nonsulfide ore. Sulfide deposition resulted from fluid–rock interaction processes and mixing between the ascending metalliferous fluids and sulfur-rich tectonic brines derived from reduced shale units.  相似文献   
995.
The orogenic banded iron formation (BIF)-hosted Au mineralization at São Bento is a structurally-controlled, hydrothermal deposit hosted by Archean rocks of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero region, Brazil. The deposit has reserves of 14.3 t Au and historical (underground) production of 44.6 t Au between 1987 and 2001. The oxide-facies São Bento BIF is mineralized at its lower portion, where in contact with carbonaceous, pelitic schists, particularly in the proximity of sulfide-bearing quartz veins. Shear-related Au deposition is associated with the pervasive, hydrothermal sulfidation (mainly arsenopyrite) of the Fe-rich bands of the São Bento BIF. Auriferous, sulfide- and quartz-rich zones represent proximal alteration zones. They are enveloped by ankerite-dominated haloes, which reflect progressive substitution of siderite and magnetite within the BIF by ankerite and pyrrhotite, respectively. The São Bento BIF was intensely and extensively deformed, first into open, upright folds that evolved into tight, asymmetric, isoclinal folds. The inverse limb of these folds attenuated and gave way to sheath folds and the establishment of ductile thrusts. Mineralized horizons at São Bento result from early structural modifications imposed by major transcurrent and thrusts faults, comprising the Conceição, Barão de Cocais and São Bento shear zones. Dextral movement on the SW–NE-directed Conceição shear zone may have generated splays at a compressional side-stepping zone, such as the São Bento shear zone, which is the structural locus for the São Bento gold mineralization. Relaxation of the Conceição shear zone under more brittle conditions resulted in the development of dilatational zones where gold–sulfide–quartz veins formed. These structures are considered to have been generated in the Archean. Geochronological data are scarce, with Pb–Pb analyses of refractory arsenopyrite and pyrite from bedded and remobilized ore plotting on a single-stage growth curve at 2.65 Ga. A later compressional, ductile deformation of unknown age overprinted, rotated and flattened the original, N60E-directed structure of the whole rock succession, with development of planar and linear fabrics that appear similar to Proterozoic-aged structures. Fluid inclusion studies indicate low salinity, aqueous fluids, with or without CO2 and/or CH4, with extremely variable CO2/CH4 ratios, of probable metamorphic origin. Fluid evolution shows a paragenetic decrease in the carbonic phase from 10–15% to 5%, and increase in the H2O/(CO2 + CH4) and CO2/CH4 ratios, suggesting important interaction with carbonaceous sediment. Trapping conditions indicate a temperature of 300 °C at 3.2 kbar.  相似文献   
996.
In SW Iberian Variscides, the boundary between the South Portuguese Zone (SPZ) and the Ossa Morena Zone (OMZ) corresponds to a major tectonic suture that includes the Beja Acebuches Ophiolite Complex (BAOC) and the Pulo do Lobo Antiform Terrane (PLAT). Three sub-parallel and approximately equidistant MT profiles were performed, covering a critical area of this Palaeozoic plate-tectonic boundary in Portugal; the profiles, running roughly along an NE–SW direction, are sub-perpendicular to the main Variscan tectonic features. Results of the three-dimensional (3-D) modelling of MT data allow to generate, for the first time, a 3-D electromagnetic imaging of the OMZ–SPZ boundary, which reveals different conductive and resistive domains that display morphological variations in depth and are intersected by two major sub-vertical corridors; these corridors coincide roughly with the NE–SW, Messejana strike–slip fault zone and with the WNW–ESE, Ferreira–Ficalho thrust fault zone. The distribution of the shallow resistive domains is consistent with the lithological and structural features observed and mapped, integrating the expected electrical features produced by igneous intrusions and metamorphic sequences of variable nature and age. The development in depth of these resistive domains suggests that: (1) a significant vertical displacement along an early tectonic structure, subsequently re-taken by the Messejana fault-zone in Late-Variscan times, has to be considered to explain differences in deepness of the base of the Precambrian–Cambrian metamorphic pile; (2) hidden, syn- to late-collision igneous bodies intrude the meta-sedimentary sequences of PLAT; (3) the roots of BAOC are inferred from 12 km depth onwards, forming a moderate resistive band located between two middle-crust conductive layers extended to the north (in OMZ) and to the south (in SPZ). These conductive layers overlap the Iberian Reflective Body (evidenced by the available seismic reflection data) and are interpreted as part of an important middle-crust décollement developed immediately above or coinciding with the top of a graphite-bearing granulitic basement.  相似文献   
997.
Santa Ana volcano in western El Salvador, Central America, had a phreatic eruption at 8:05 am (local time) on October 1, 2005, 101 years after its last eruption. However, during the last one hundred years this volcano has presented periods of quiet degassing with fumarolic activity and an acidic lake within its crater. This paper presents results of frequent measurements of SO2 degassing using the MiniDOAS (Differential Optical Absorption Spectroscopy) system and a comparison with the volcanic seismicity prior to the eruption, during, and after the eruption. Vehicle measurements of SO2 flux were taken every hour during the first nine days of the eruption and daily after that. The period of time reported here is from August to December, 2005. Three periods of degassing are distinguished: pre-eruptive, eruptive, and post-eruptive periods. The intense activity at Santa Ana volcano started in July 2005. During the pre-eruptive period up to 4306 and 5154 ton/day of SO2 flux were recorded on October 24 and September 9, 2005, respectively. These values were of the same order of magnitude as the recorded values just after the October 1st eruption (2925 ton/day at 10:01 am). Hourly measurements of SO2 flux taken during the first nine days after the main eruptive event indicate that explosions are preceded by an increase in SO2 flux and that this parameter reaches a peak after the explosion took place. This behavior suggests that increasing accumulation of exsolved magmatic gases occurs within the magmatic chamber before the explosions, increasing the pressure until the point of explosion. A correlation between SO2 fluxes and RSAM (Real Time Seismic Amplitude Measurements) is observed during the complete sampling period. Periodic fluctuations in the SO2 and RSAM values during the entire study period are observed. One possible mechanism explaining these fluctuations it that convective circulation within the magmatic chamber can bring fresh magma periodically to shallow levels, allowing increasing degasification and then decreasing degasification as the batch of magma lowers its gas content, becomes denser, and sinks to give space to a new magma pulse. These results illustrate that the measurements of SO2 flux can provide important warning signals for incoming explosive activity in active volcanoes.  相似文献   
998.
999.
A finite-volume numerical model is employed to investigate the adaptation of the atmospheric boundary layer to a change in the underlying surface roughness, such as that existing in the transition from land to the free surface of a water body. Numerical results are validated by comparison with neutral stratification atmospheric data and compared with the internal boundary-layer (IBL) heights computed using a number of existing empirical formulae. The numerical analysis allows an extension of the fetch range in which the existing formulae, calibrated only by comparison with short fetch data, may be applied. An argument is offered that the spatial variability of the water surface roughness should be also taken into account for the IBL development over the surface of a water body.  相似文献   
1000.
The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of flows over two-dimensional, smooth, steep hills. Four different law of the wall formulations are tested when a large recirculating region is formed on the lee side of the hill. Numerical implementation of the near-wall functions was made through a finite elements code. The standard κ–ε model was used to close the averaged Navier–Stokes equations. Results are validated through original data obtained in a water tank. Measurements resorted to laser Doppler anemometry. The experiment provide detailed data for the characterization of the reverse flow in the region between the separation and the reattachment points, with emphasis on the near wall region. The experimental wall shear stress distribution is compared with the results provided by the different laws of the wall showing good agreement. The numerical predictions are shown to vary markedly between different formulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号